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Oscillatory phase transition and pulse propagation in noisy integrate-and-fire neurons
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We study nonlocally coupled noisy integrate-and-fire neurons with the Fokker-Planck equation. A propagat-
ing pulse state and a wavy state appear as a phase transition from an asynchronous state. We also find a
solution in which traveling pulses are emitted periodically from a pacemaker region.

DOI: 10.1103/PhysRevE.70.022901 PACS nunm®)er87.10:+e, 05.45.Xt, 84.35i

Coherent oscillations are observed in neural systems such The equation for a noisy integrate-and-fire neuron is writ-
as the visual cortex and the hippocampus. The synchronizaen as dx/dt=1—bx+ 1o+ &t) (1)
tion of the oscillators is considered to play important roles in ’
neural information processingl]. There are mainly two wherex is a variable corresponding to the membrane poten-
viewpoints in the research of the oscillatory activity in neuraltial, b is a positive parametet, denotes an external input,
systems. In the first viewpoint, the activity of each neuron isand £(t) is the Gaussian white noise satisfyigg(t)&(t’))
expressed by the firing rate, and the coherent oscillation aR=2p §(t-t'). If x reaches a threshold & jumps back to 0. If
pears owing to the interaction of the excitatory and inhibitoryb<1+|0 each neuron fires spontar’1eously The Fokker-

neurons. Wilson and Cohef2] and Amari[3] found first . ; o
oscillatory behavior theoretically in interacting neurons. Re-PIarICk equation for the Langevin equatid) is

cently, Robinson, Rennie, and Rowe proposed a more elabo- P 2P
rate model to explain various EEG rhythms and epileptic — == (1 -bx+IlgP(X) + D—— + 8x)Jp(1), (2
seizures[4]. If the spatial freedom is taken into consider- at IX dX

ation, the excitation wave can propagate. Wilson and Cowan _ . - .
performed numerical simulations of two layers of excitableWhereJO(t)' D(aP/dx)x=1 is the firing rate. The stationary

neurons and inhibitory neuroi]. In the second viewpoint, distributionPo(x) for the Fokker-Planck equatia®) is writ-
each neuron is regarded as an oscillator. Coherent oscillatid§" as[(20]

appears as the global synchronization of the coupled oscilla- ~ 20

tors. The global synchronization in general coupled oscilla-  Po(X) = Po(0)e!@- 2030 (for x < 0)

tors was first studied by Winfregs]. Kuramoto proposed a X
globally coupled phase oscillator model as a solvable model f gl-az+(1/2bZ}D
for the global synchronizatiofi7]. The leaky-integrate-fire 0

model is one of the simplest models for a single neuron and
often used to study dynamical behaviors of neural networks. f el-az+(L2b2)D

Each neuron receives an input via synaptic connections from 0

other neurons and it fires when the input goes over a thresh- (for 0<x< 1), (3)
old and sends out impulses to other neurons. Mirollo and

Strogatz studied a globally coupled system of the integratewherea=1+l, and P(0) is determined from the normaliza-
and-fire neurons, and showed that perfect synchronizatiotion condition %, Py(x)dx=1. The firing rateJ, is deter-
occurs in a finite time{8]. The synchronization of pulse mined as Jy=DPy(0)/ [} gl-aztW2b2iPg; We have per-
coupled oscillators has been studied in dete,rmlnlstlc_sys_ten]%rmed direct numerical simulation of E() with the finite
by many researcheff®-11. If each oscillator’s behavior is  jifference method withAx=0.0002 andAt=2.5x 105, and

stochastic, the model is generalized to a noisy phase oscillgnecked that the stationary probability distributi@is suc-
tor model and a noisy integrate-and-fire model. In the Sto'cessfully obtained.

chastic system, the coherent oscillation appears as an analogye assume a nonlocally coupled system composed of the
of the phase transition in the statistical mechanics. Globally,gisy integrate-and-fire neurons. Each neuron interacts with
coupled noisy phase oscillators were studie@li2-13, and  other neurons via synaptic connections. Time delay exists
globally coupled noisy integrate-and-fire models were studyenerally for the synaptic connections. A model equation of

led in [16-1§. The globally coupled system is a useful ihe interacting noisy integrate-and-fire neurons is written as
model for the detailed analyses; however, local or nonlocal

interactions are more plausible, since neurons interact with dx/dt=1-bx +;+ &(1), (4)
other neurons via long axons or gap junctions. The nonlo-

cally coupled system of the deterministic integrate-and-firavherex; denotes the dimensionless membrane potential for
neurons was also studi¢di9]. In this Brief Report, we study theith neurong(t) denotes the noise term which is assumed
a nonlocally coupled noisy integrate-and-fire model by theto be mutually independent—i.e(&(t)&(t'))=2D4;d(t
direct numerical simulation of the Fokker-Planck equation. —t’)—and |; is the input to theith neuron by the mutual

— PO(O)e{(ax—(1/2)bx2}/D 1-
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FIG. 1. (a) Linear growth ratex as a function of wave numbés of the uniform solution forg,(y)=1.41.5 exg-4|y|)—0.1 at D
=0.025. The cross mark on the vertical line indicates the linear growth rate=for(b) Linear growth ratex at k=27/L as a function of
D. (c) Time evolution of the profiles of the firing rati(y).

interaction. The input; to the ith neuron from the other

neurons is given by

L=>> gij} —(t—t{()lf,
kT

WheretL is the time of thekth firing for the jth neuron,g; ;
denotes the interaction strength from fitle neuron to theéth

dify,t) ~
- {H(y,t) = Iy, D)}/ 7,
J(y,t) = J a(y,y")Joly’,)dy’, (7)

whereg(y,y’) is the coupling strength from the neuron lo-
cated aty’ to the one aty, andl(y) and Jy(y) are, respec-

neuron, andr denotes a decay constant. The sum is take'iively, the input and firing rate for the neuronat

only fort>t{(. The effect of the firing of th¢th neuron to the
ith neuron decays continuously withIf 7— 0, the coupling

becomes instantaneous. Equat{dhis equivalent to

dIi__ o ]
e {I, ;%gwé(t t{()}/T.

If there are infinitely many neurons at each positigrnwe

We have assumed that the time delay for the signal to
transmit betweery’ andy can be neglected argly,y’) de-
pends only on the distandg-y’|—i.e., g(y,y")=g(ly-y’]).

As two simple examples of the nonlocal coupling, we use
9u(y,y")=c expl-«ly-y’)-d and g(y,y’)=c exp(-«ly
-y'|)-d exp(-«’ly=Yy’|). These forms of the coupling imply
that the interaction is excitable locally, but the interaction

can define the number density of neurons with membranstrength decreases with the distafgey’|, and it becomes
potentialx clearly at each position. The number density isinhibitory when |y-y’| is large. This Mexican-hat type of

expressed as(x,y,t) at positiony and timet. The nonlo-

coupling was used in several neural mod@%], especially

cally coupled system can be studied with a mean-field apto study the competitive dynamics in neural systems. Al-
proach. In the mean-field approach, the number density ithough two layer models of excitatory neuron layer and in-

proportional to the probability distributioR(x,y,t) for the
probability variablex. The average value ob(t-t}) ex-
presses the average firing rate at tina the positiory. It is
expressed agy(y,t)=-D(dn/dxX)y-1. The number density
n(x,y,t) therefore obeys the Fokker-Planck-type equation

hibitory neuron layer may be more realistic, we consider the
above simpler one-layer model. The inhibitory interaction
approaches a constant valué fer the couplingg, and 0 for

the couplingg,. The system size is assumed tolbel0 as a
simple example, and the periodic boundary conditions for the
space variablg are imposed. We choose the damping con-

an(x,y) d n stantsk and«’, as the exponential function decays to almost
2T = - 1 - bx+ [(y, ) In(Xy) + D— + 8X)Jo(Y, 1), K and, P S
ot &x[ ¥, 0InGey) ax? 003o(y.1) 0 for the distancey—y’|~L. Therefore, the dynamical be-
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FIG. 2. Peak-peak amplitudeof I(y,t) as a function oD for (a) g;(y)=1.21.5 exg—4|y|)-0.1}, (b) g1(y)=1.5 exg—4]y|)-0.1, andc)

01(y)=1.31.5 exg-4Jy|)-0.1.
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haviors do not depend on the system dizqualitatively in  direct numerical simulations of Eq10). We have numeri-
the second model. But the dynamical behaviors depend ogally calculated the linear growth rate of the norm
the system sizé in the first model, because the range of the{/(dn)%dx+ (81,3 (which grows aseM for t>1) every
inhibitory interaction is infinite in the model. time interval 0.001. Since the norm grows to infinity or de-
There is a stationary and uniform solutiam(x,y,t) cays to zero in the natural time evolution of the linear equa-
=ne(x) andI(y,t)=I, in the nonlocally coupled equation. The tion, we have renormalized the variables every time interval
uniform solution satisfies 0.001, as the norm is 1 by the rescalingn,— én, and
cdl— 48l with a constant. We have regarded the average
No(X) :no(o)e{ax—(1/2)bx2}/D (for x < 0) value of the linear growth rate of the norm as the largest
. eigenvalue for Eq(10).
j ol-az+1/2b2)D g, Figure Xa) displays the linear growth rateas a function
0 of k for the couplingg,(y)=1.21.5 exg—4Jy|)-0.1} at D
= ny(0)el@-(12p3D| 7 _ T =0.025. The other parametebsand r are fixed to beb
gl-az+(1/2b2}IDy, =0.8,r=0.01. There is discontinuity &=0 for this cou-
0 pling. The linear growth rate &=0 takes a negative value
denoted by the cross. The uniform state is stable for the

(for 0<x<1), ®) uniform perturbation withk=0. The growth rate decreases
where the paramete is determined by the self-consistent With k, but it is positive fork<2. Figure 1b) displays the
condition a=1-goD(d No(X)/I X)y1, (9) linear growth rate as a function & for the couplingg; at

k=2m/L. The uniform state is unstable f&r<0.0291. The
wherego=/g(y,y")dy". Hopf bifurcation occurs for a nonzero wave number. There-

To study the linear stability of the stationary and uniform fore, a wavy state is expected to appearBor 0.0291. We
solution, we consider small deviatio@(x,y,t)=n(X,y,t)  have performed direct numerical simulations for this cou-
—ng(x) and 8l(y,t)=I-1Iy from the uniform solution. The pling at D=0.028. Figure (c) displays a time evolution of
small deviations can be expressed with the Fourier series ale profiles of the firing ratéy(y,t). The profile of the firing
n(x,y,H)==an(x,)expiky) and dl(y,t)==4l, expiky)  rate has a pulse structure and it is propagating in the right
under the periodic boundary conditions, whé&e27m/L.  direction. Since the pulse propagates one rounalith pe-

The perturbationgn, and 8l obey coupled linear equations riod T=3.23, the velocity of the traveling pulse Is/T
~3.1. A regular limit cycle oscillation with period is ob-
a[éhk(x,t)]/at:—i{(l—bx+ o) (X, 1) + 81, ()N(X)} served at each point. The directions depend on the initial
IX conditions. The traveling pulse state is an ordered state in the
2on, nonlocally coupled system. The locally excitable interaction
+D—— + 8(x)8Jo(1), facilitates the local synchronization of the firing, but the glo-
IX bal inhibition suppresses the complete synchronization. As a
result of the frustration, a traveling pulse appears. The pulse
state is different from the traveling pulse observed in an ex-
citable system, since the uniform state is unstable in our
- system and the pulse state is spontaneously generated from
where 8Jy(t)=-D(an/dx)-1 and g’'=[g(y,y")ekY Ydy'.  the stationary asynchronous state.
For L is sufficiently large,g’ =2ck/(k*+k?) —dLé for the The inputl(y,t) to the neuron at position exhibits regu-
coupling g; and g’ =2ck/(k?>+k?)—-2dx’/(x'?+k?) for the lar limit cycle oscillation. Figure @) displays the peak-peak
coupling g,. The stability of the stationary state is deter- amplitudeA, which is defined as the maximum value minus
mined by the real part of the eigenvalues of the linear equathe minimum value of(y,t), as a function oD. The oscil-
tion (10). Here we have evaluated the real partof the latory state disappears Bt=0.02985 and the traveling pulse
largest eigenvalue of the linear equation for variduby  state changes into the stationary and uniform state. Inversely,

dal(t)

at {8l(t) — g 8o (D)} 7, (10
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FIG. 3. () Linear growth rate\ as a function ok at D=0.01 forg,(y)=1.2{1.5 exg—4]y|)-0.4 exg-|y|)}. (b) Peak-peak amplitudes
of I(y,t) as a function oD. (c) Time evolution of the firing ratdy(y) for the pulse train state &=0.01.
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asD is decreased, the traveling pulse state appears sponta- t

neously from the stationary state @t=0.0291, which is the 54— > -~
critical value obtained from the linear stability analysis. That 4___//\;_9#
is, the phase transition is weakly subcritical for this coupling. %
We have changed the coupling function ag(y) 3f—"% ]
=a{1.5 exg-4ly|) -0.1} with a free parametex and studied 2_—-/&_”/%_/%
the phase transition at two other valuesagf1l anda=1.3. ~S—<

The critical valuesD. by the linear stability analysis are 14 #\K o=
D.=0.0232 fora=1 andD;=0.0320 fora=1.3. Figures @) I e
and 2c) display the peak-peak amplitudk of I(y,t) as a o 2 4 6 8 10
function of D by the direct numerical simulation of E(). y

The bifurcation is supercritical for=1 and it is subcritical FIG. 4. Time evolution of the firing ratdy(y) for the wavy state

for a=1.3. The parameter rangeD =0.02 of the hysteresis including a pacemaker region Bt=0.01.
region is larger fora=1.3 than the parameter randgeD
=0.0075 fora=1.2. There is a transition from the supercriti- =L./(3T)=1.67, wherel'=2.0 is the period of oscillation at a
cal bifurcation to the subcritical bifurcation at a critical value fixed position. Figure 4 displays a time evolution of a differ-
slightly smaller thane=1.2. ent type of wavy state. This state was obtained in a numerical
As a second example, we consider a nonlocally coupledjmylation at the same paramefr0.01 as Fig. &), start-
system with the coupling functiory,(y)=1.8 exg-4ly|)  ing from the uniform initial condition with small random
—0.48 exp-|y|). Figure 3a) displays the linear growth rate  perturbations. Pulses are created periodically xea6 and
for the stationary and uniform state as a functiorkat D they are propagating alternatively in different directions. The
=0.01. The linear growth rate is a continuous functiorkof inversely propagating pulses collide>at 1 and they disap-
and takes a maximum &t~ 2. The linear growth rate takes pear. Namely, there are a pacemaker reg@gsource region
the largest value at wave numbex 677/10 (i.e., wavelength  and a sink region of traveling pulses in this solution. This
L/3) in our finite-size system ofL=10. The linear growth type of wavy state including a pacemaker region and the
rate atk=67/10 takes positive values fdd <D.=0.0155. simple pulse-train state are bistable.
We have performed direct numerical simulations for various To summarize, we have studied the nonlocally noisy
D's. Awavy state with finite wave numbér67/10 appears integrate-and-fire model with the Fokker-Planck equation.
in this nonlocal system fob <D.. Figure 3b) displays the We have found that a traveling pulse appears as a result of
peak-peak amplitude dfly,t) as a function ofD. A super-  oscillatory phase transitions. We found also a pulse-train
critical phase transition occurs Bt~ 0.0155, which is also state by changing the form of the interaction. The wavy
consistent with the linear stability analysis. Near the criticalstates appear as a phase transition from an asynchronous
value, the amplitude of the oscillation is small and the wavystate when the noise strength is decreased. We have investi-
state seems to be sinusoidal. Bsis decreased, the oscilla- gated a one-dimensional system for the sake of simplicity of
tion amplitude increases and the sinusoidal waves changsumerical simulations, but we can generalize the model
into pulse trains gradually. Figurgd displays the time evo- equation to a two-dimensional system easily. Our nonlocally
lution of the profile of the firing ratdy(y,t) atD=0.01. This  coupled integrate-and-fire model might be too simple; how-
pattern was obtained by decreasibg stepwise from the ever, the wavy state is one of the typical dissipative struc-
sinusoidal wave state near the critical point. The pulse numtures far from equilibrium. Therefore, the spontaneously gen-
ber is three and it is consistent with the result of the linearerated waves might be observed as some kind of brain waves
stability analysis. The velocity of propagating pulsevis also in real neural systems.
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