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We study nonlocally coupled noisy integrate-and-fire neurons with the Fokker-Planck equation. A propagat-
ing pulse state and a wavy state appear as a phase transition from an asynchronous state. We also find a
solution in which traveling pulses are emitted periodically from a pacemaker region.
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Coherent oscillations are observed in neural systems such
as the visual cortex and the hippocampus. The synchroniza-
tion of the oscillators is considered to play important roles in
neural information processing[1]. There are mainly two
viewpoints in the research of the oscillatory activity in neural
systems. In the first viewpoint, the activity of each neuron is
expressed by the firing rate, and the coherent oscillation ap-
pears owing to the interaction of the excitatory and inhibitory
neurons. Wilson and Cohen[2] and Amari [3] found first
oscillatory behavior theoretically in interacting neurons. Re-
cently, Robinson, Rennie, and Rowe proposed a more elabo-
rate model to explain various EEG rhythms and epileptic
seizures[4]. If the spatial freedom is taken into consider-
ation, the excitation wave can propagate. Wilson and Cowan
performed numerical simulations of two layers of excitable
neurons and inhibitory neurons[5]. In the second viewpoint,
each neuron is regarded as an oscillator. Coherent oscillation
appears as the global synchronization of the coupled oscilla-
tors. The global synchronization in general coupled oscilla-
tors was first studied by Winfree[6]. Kuramoto proposed a
globally coupled phase oscillator model as a solvable model
for the global synchronization[7]. The leaky-integrate-fire
model is one of the simplest models for a single neuron and
often used to study dynamical behaviors of neural networks.
Each neuron receives an input via synaptic connections from
other neurons and it fires when the input goes over a thresh-
old and sends out impulses to other neurons. Mirollo and
Strogatz studied a globally coupled system of the integrate-
and-fire neurons, and showed that perfect synchronization
occurs in a finite time[8]. The synchronization of pulse
coupled oscillators has been studied in deterministic systems
by many researchers[9–11]. If each oscillator’s behavior is
stochastic, the model is generalized to a noisy phase oscilla-
tor model and a noisy integrate-and-fire model. In the sto-
chastic system, the coherent oscillation appears as an analog
of the phase transition in the statistical mechanics. Globally
coupled noisy phase oscillators were studied in[12–15], and
globally coupled noisy integrate-and-fire models were stud-
ied in [16–18]. The globally coupled system is a useful
model for the detailed analyses; however, local or nonlocal
interactions are more plausible, since neurons interact with
other neurons via long axons or gap junctions. The nonlo-
cally coupled system of the deterministic integrate-and-fire
neurons was also studied[19]. In this Brief Report, we study
a nonlocally coupled noisy integrate-and-fire model by the
direct numerical simulation of the Fokker-Planck equation.

The equation for a noisy integrate-and-fire neuron is writ-
ten as dx/dt = 1 −bx+ I0 + jstd, s1d

wherex is a variable corresponding to the membrane poten-
tial, b is a positive parameter,I0 denotes an external input,
and jstd is the Gaussian white noise satisfyingkjstdjst8dl
=2Ddst− t8d. If x reaches a threshold 1,x jumps back to 0. If
b,1+I0, each neuron fires spontaneously. The Fokker-
Planck equation for the Langevin equation(1) is

] P

] t
= −

]

] x
s1 − bx+ I0dPsxd + D

]2P

] x2 + dsxdJ0std, s2d

whereJ0std=−Ds]P/]xdx=1 is the firing rate. The stationary
distributionP0sxd for the Fokker-Planck equation(2) is writ-
ten as[20]

P0sxd = P0s0dehsax−s1/2dbx2j/D sfor x , 0d

= P0s0dehsax−s1/2dbx2j/D31 −
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sfor 0 , x , 1d, s3d

wherea=1+I0 and Ps0d is determined from the normaliza-
tion condition e−`

1 P0sxddx=1. The firing rateJ0 is deter-

mined as J0=DP0s0d /e0
1 eh−az+s1/2dbz2j/Ddz. We have per-

formed direct numerical simulation of Eq.(2) with the finite
difference method withDx=0.0002 andDt=2.5310−5, and
checked that the stationary probability distribution(3) is suc-
cessfully obtained.

We assume a nonlocally coupled system composed of the
noisy integrate-and-fire neurons. Each neuron interacts with
other neurons via synaptic connections. Time delay exists
generally for the synaptic connections. A model equation of
the interacting noisy integrate-and-fire neurons is written as

dxi/dt = 1 −bxi + I i + jistd, s4d

wherexi denotes the dimensionless membrane potential for
the ith neuron,jistd denotes the noise term which is assumed
to be mutually independent—i.e.,kjistdj jst8dl=2Ddi,jdst
− t8d—and I i is the input to theith neuron by the mutual
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interaction. The inputI i to the ith neuron from the other
neurons is given by

I i = o
j
o

k

gi,j
1

t
e−st−tk

j d/t, s5d

wheretk
j is the time of thekth firing for the j th neuron,gi,j

denotes the interaction strength from thej th neuron to theith
neuron, andt denotes a decay constant. The sum is taken
only for t. tk

j . The effect of the firing of thej th neuron to the
ith neuron decays continuously witht. If t→0, the coupling
becomes instantaneous. Equation(5) is equivalent to

dIi
dt

= − HI i − o
j

o
k

gi,jdst − tk
j dJY t. s6d

If there are infinitely many neurons at each positiony, we
can define the number density of neurons with membrane
potentialx clearly at each position. The number density is
expressed asnsx,y,td at positiony and timet. The nonlo-
cally coupled system can be studied with a mean-field ap-
proach. In the mean-field approach, the number density is
proportional to the probability distributionPsx,y,td for the
probability variablex. The average value ofdst− tk

j d ex-
presses the average firing rate at timet at the positiony. It is
expressed asJ0sy,td=−Ds]n/]xdx=1. The number density
nsx,y,td therefore obeys the Fokker-Planck-type equation

] nsx,yd
] t

= −
]

] x
f1 − bx+ Isy,tdgnsx,yd + D

]2n

] x2 + dsxdJ0sy,td,

dIsy,td
dt

= − hIsy,td − Jsy,tdj/t,

Jsy,td =E gsy,y8dJ0sy8,tddy8, s7d

wheregsy,y8d is the coupling strength from the neuron lo-
cated aty8 to the one aty, and Isyd and J0syd are, respec-
tively, the input and firing rate for the neuron aty.

We have assumed that the time delay for the signal to
transmit betweeny8 andy can be neglected andgsy,y8d de-
pends only on the distanceuy−y8u—i.e., gsy,y8d=gsuy−y8ud.
As two simple examples of the nonlocal coupling, we use
g1sy,y8d=c exps−kuy−y8ud−d and g2sy,y8d=c exps−kuy
−y8ud−d exps−k8uy−y8ud. These forms of the coupling imply
that the interaction is excitable locally, but the interaction
strength decreases with the distanceuy−y8u, and it becomes
inhibitory when uy−y8u is large. This Mexican-hat type of
coupling was used in several neural models[21], especially
to study the competitive dynamics in neural systems. Al-
though two layer models of excitatory neuron layer and in-
hibitory neuron layer may be more realistic, we consider the
above simpler one-layer model. The inhibitory interaction
approaches a constant value −d for the couplingg1 and 0 for
the couplingg2. The system size is assumed to beL=10 as a
simple example, and the periodic boundary conditions for the
space variabley are imposed. We choose the damping con-
stantsk andk8, as the exponential function decays to almost
0 for the distanceuy−y8u,L. Therefore, the dynamical be-

FIG. 1. (a) Linear growth ratel as a function of wave numberk of the uniform solution forg1syd=1.2h1.5 exps−4uyud−0.1j at D
=0.025. The cross mark on the vertical line indicates the linear growth rate fork=0. (b) Linear growth ratel at k=2p /L as a function of
D. (c) Time evolution of the profiles of the firing rateJ0syd.

FIG. 2. Peak-peak amplitudeA of Isy,td as a function ofD for (a) g1syd=1.2h1.5 exps−4uyud−0.1j, (b) g1syd=1.5 exps−4uyud−0.1, and(c)
g1syd=1.3h1.5 exps−4uyud−0.1j.
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haviors do not depend on the system sizeL qualitatively in
the second model. But the dynamical behaviors depend on
the system sizeL in the first model, because the range of the
inhibitory interaction is infinite in the model.

There is a stationary and uniform solutionnsx,y,td
=n0sxd andIsy,td= I0 in the nonlocally coupled equation. The
uniform solution satisfies

n0sxd = n0s0dehax−s1/2dbx2j/D sfor x , 0d

= n0s0dehax−s1/2dbx2j/D31 −

E
0

x

eh−az+s1/2dbz2j/Ddz

E
0

1

eh−az+s1/2dbz2j/Ddz4
sfor 0 , x , 1d, s8d

where the parametera is determined by the self-consistent
condition a = 1 −g0Ds] n0sxd/] xdx=1, s9d

whereg0=egsy,y8ddy8.
To study the linear stability of the stationary and uniform

solution, we consider small deviationsdnsx,y,td=nsx,y,td
−n0sxd and dIsy,td= I − I0 from the uniform solution. The
small deviations can be expressed with the Fourier series as
dnsx,y,td=odnksx,tdexpsikyd and dIsy,td=odIk expsikyd
under the periodic boundary conditions, wherek=2pm/L.
The perturbationsdnk anddIk obey coupled linear equations

] fdnksx,tdg/] t = −
]

] x
hs1 − bx+ I0ddnksx,td + dIkstdn0sxdj

+ D
]2dnk

] x2 + dsxddJ0std,

ddIkstd
dt

= − hdIkstd − g8dJ0kstdj/t, s10d

where dJ0kstd=−Ds]nk/]xdx=1 and g8=egsy,y8deiksy8−yddy8.
For L is sufficiently large,g8=2ck / sk2+k2d−dLdk,0 for the
coupling g1 and g8=2ck / sk2+k2d−2dk8 / sk82+k2d for the
coupling g2. The stability of the stationary state is deter-
mined by the real part of the eigenvalues of the linear equa-
tion (10). Here we have evaluated the real partl of the
largest eigenvalue of the linear equation for variousk by

direct numerical simulations of Eq.(10). We have numeri-
cally calculated the linear growth rate of the norm
hesdnkd2dx+sdIkd2j1/2 (which grows aselt for t@1) every
time interval 0.001. Since the norm grows to infinity or de-
cays to zero in the natural time evolution of the linear equa-
tion, we have renormalized the variables every time interval
0.001, as the norm is 1 by the rescalingcdnk→dnk and
cdIk→dIk with a constantc. We have regarded the average
value of the linear growth rate of the norm as the largest
eigenvalue for Eq.(10).

Figure 1(a) displays the linear growth ratel as a function
of k for the couplingg1syd=1.2h1.5 exps−4uyud−0.1j at D
=0.025. The other parametersb and t are fixed to beb
=0.8,t=0.01. There is discontinuity atk=0 for this cou-
pling. The linear growth rate atk=0 takes a negative value
denoted by the cross. The uniform state is stable for the
uniform perturbation withk=0. The growth rate decreases
with k, but it is positive fork,2. Figure 1(b) displays the
linear growth rate as a function ofD for the couplingg1 at
k=2p /L. The uniform state is unstable forD,0.0291. The
Hopf bifurcation occurs for a nonzero wave number. There-
fore, a wavy state is expected to appear forD,0.0291. We
have performed direct numerical simulations for this cou-
pling at D=0.028. Figure 1(c) displays a time evolution of
the profiles of the firing rateJ0sy,td. The profile of the firing
rate has a pulse structure and it is propagating in the right
direction. Since the pulse propagates one roundL with pe-
riod T=3.23, the velocity of the traveling pulse isL /T
,3.1. A regular limit cycle oscillation with periodT is ob-
served at each point. The directions depend on the initial
conditions. The traveling pulse state is an ordered state in the
nonlocally coupled system. The locally excitable interaction
facilitates the local synchronization of the firing, but the glo-
bal inhibition suppresses the complete synchronization. As a
result of the frustration, a traveling pulse appears. The pulse
state is different from the traveling pulse observed in an ex-
citable system, since the uniform state is unstable in our
system and the pulse state is spontaneously generated from
the stationary asynchronous state.

The inputIsy,td to the neuron at positiony exhibits regu-
lar limit cycle oscillation. Figure 2(a) displays the peak-peak
amplitudeA, which is defined as the maximum value minus
the minimum value ofIsy,td, as a function ofD. The oscil-
latory state disappears atD=0.02985 and the traveling pulse
state changes into the stationary and uniform state. Inversely,

FIG. 3. (a) Linear growth ratel as a function ofk at D=0.01 forg2syd=1.2h1.5 exps−4uyud−0.4 exps−uyudj. (b) Peak-peak amplitudesA
of Isy,td as a function ofD. (c) Time evolution of the firing rateJ0syd for the pulse train state atD=0.01.
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as D is decreased, the traveling pulse state appears sponta-
neously from the stationary state atD=0.0291, which is the
critical value obtained from the linear stability analysis. That
is, the phase transition is weakly subcritical for this coupling.
We have changed the coupling function asg1syd
=ah1.5 exps−4uyud−0.1j with a free parametera and studied
the phase transition at two other values ofa=1 anda=1.3.
The critical valuesDc by the linear stability analysis are
Dc=0.0232 fora=1 andDc=0.0320 fora=1.3. Figures 2(b)
and 2(c) display the peak-peak amplitudeA of Isy,td as a
function of D by the direct numerical simulation of Eq.(7).
The bifurcation is supercritical fora=1 and it is subcritical
for a=1.3. The parameter rangeDD=0.02 of the hysteresis
region is larger fora=1.3 than the parameter rangeDD
=0.0075 fora=1.2. There is a transition from the supercriti-
cal bifurcation to the subcritical bifurcation at a critical value
slightly smaller thana=1.2.

As a second example, we consider a nonlocally coupled
system with the coupling functiong2syd=1.8 exps−4uyud
−0.48 exps−uyud. Figure 3(a) displays the linear growth ratel
for the stationary and uniform state as a function ofk at D
=0.01. The linear growth rate is a continuous function ofk
and takes a maximum atk,2. The linear growth rate takes
the largest value at wave numberk=6p /10 (i.e., wavelength
L /3) in our finite-size system ofL=10. The linear growth
rate atk=6p /10 takes positive values forD,Dc=0.0155.
We have performed direct numerical simulations for various
D’s. A wavy state with finite wave numberk=6p /10 appears
in this nonlocal system forD,Dc. Figure 3(b) displays the
peak-peak amplitude ofIsy,td as a function ofD. A super-
critical phase transition occurs atD,0.0155, which is also
consistent with the linear stability analysis. Near the critical
value, the amplitude of the oscillation is small and the wavy
state seems to be sinusoidal. AsD is decreased, the oscilla-
tion amplitude increases and the sinusoidal waves change
into pulse trains gradually. Figure 3(c) displays the time evo-
lution of the profile of the firing rateJ0sy,td at D=0.01. This
pattern was obtained by decreasingD stepwise from the
sinusoidal wave state near the critical point. The pulse num-
ber is three and it is consistent with the result of the linear
stability analysis. The velocity of propagating pulse isv

=L / s3Td=1.67, whereT=2.0 is the period of oscillation at a
fixed position. Figure 4 displays a time evolution of a differ-
ent type of wavy state. This state was obtained in a numerical
simulation at the same parameterD=0.01 as Fig. 3(c), start-
ing from the uniform initial condition with small random
perturbations. Pulses are created periodically nearx,6 and
they are propagating alternatively in different directions. The
inversely propagating pulses collide atx,1 and they disap-
pear. Namely, there are a pacemaker region(a source region)
and a sink region of traveling pulses in this solution. This
type of wavy state including a pacemaker region and the
simple pulse-train state are bistable.

To summarize, we have studied the nonlocally noisy
integrate-and-fire model with the Fokker-Planck equation.
We have found that a traveling pulse appears as a result of
oscillatory phase transitions. We found also a pulse-train
state by changing the form of the interaction. The wavy
states appear as a phase transition from an asynchronous
state when the noise strength is decreased. We have investi-
gated a one-dimensional system for the sake of simplicity of
numerical simulations, but we can generalize the model
equation to a two-dimensional system easily. Our nonlocally
coupled integrate-and-fire model might be too simple; how-
ever, the wavy state is one of the typical dissipative struc-
tures far from equilibrium. Therefore, the spontaneously gen-
erated waves might be observed as some kind of brain waves
also in real neural systems.
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